Saturday, April 13, 2024

Upgrading the Palm Oil Industry in Indonesia

With Indonesia's palm oil plantation area reaching around 15 million hectares and palm oil mills reaching 1000 units, efforts to upgrade the palm oil industry are important and strategic. Indonesia's palm oil or CPO production per year is around 46 million tons (while Malaysia is in second place at around 19 million tons/year). Efforts to upgrade the palm oil industry will increase productivity/efficiency, sustainability and encourage the creation of new products/markets as well as added value for palm oil. Things that can be upgraded include a number of key areas including bioenergy, biomaterials and oleochemicals, food and feed, soil fertility (land, soil and cultivation), post-harvest and processing, waste processing and the environment as well as socio-economics, management and business.

One concrete thing that can be done is the production of biochar from palm oil mill waste, especially empty fruit bunches (EFB) and palm fiber (mesocarp fiber). Biochar production by pyrolysis will produce excess energy (syngas & biooil) which can be used as boiler fuel in palm oil mills. Furthermore, the application of biochar with fertilizer on palm oil plantations will become slow release fertilizer (SRF), thereby increasing nutrient use efficiency (NUE). The condition of many oil palm plantations on acidic soil will also increase in pH when biochar is applied.

In palm oil plantation operations, fertilizer is the highest cost component so that if you can increase fertilizer efficiency it will provide significant benefits. The use of biochar is the solution, namely SRF. SRF also minimizes environmental pollution due to the use of fertilizer. Meanwhile, in palm oil mill operations, energy is a vital component, and if this can maximize the use of waste that has no economic value, it will certainly be very economical apart from of course overcoming environmental problems caused by this waste. Currently, palm oil mills use palm fiber (mesocarp fiber) and some palm kernel shells (PKS/palm kernel shell) for boiler materials, while generally the empty fruit bunches (EFB) have not been used, even though these palm kernel shells (PKS) can be sold directly and sell well. This means that if the energy source only comes from palm fiber (mesocarp fiber) and empty fruit bunches (EFB), 100% of the palm kernel shells (PKS) can be sold. This can be done by pyrolysis.

Biochar in the soil can last hundreds or even thousands of years. Biochar which comes from agricultural waste such as empty fruit bunches (EFB) and palm fiber (mesocarp fiber) will become a carbon sink through carbon sequestration, so that the concentration of CO2 in the atmosphere is reduced as long as the biochar is not decomposed. From a climate perspective, this is very beneficial and later you can get compensation in the form of carbon credits. A number of standards and verification methods to facilitate monetization are currently being developed.

Empty fruit bunches (EFB) and palm fiber (mesocarp fiber) are waste from palm oil mills, whereas biochar is applied in palm oil plantations. Management in the palm oil industry generally separates the mill division and the plantation division, so new management methods are needed if biochar production using pyrolysis is carried out. Apart from using biochar for core plantations (managed by palm oil company), it can also be used for plasma plantations (managed by farmer).

No comments:

Post a Comment

Maximizing the Rate of CO2 Absorption from the Atmosphere Based on Biomass

Maximizing the rate of CO2 absorption from the atmosphere is very important considering the rate of addition of CO2 concentration to the a...