Sunday, March 15, 2020

Dessicated Coconut Factory and Continuous Pyrolysis

There are about 20 dessicated coconut factories operating in Indonesia or estimated to be more than 100 units worldwide. With an average capacity of 2 tons / hour, this dessicated coconut factory requires approximately 16,200 coconuts every hour. The byproducts produced are coconut shell and coconut water. Coconut shells produced are around 6 tons / hour and coconut water 4.2 tons / hour. The dessicated coconut plant needs electricity and heat to sterilize the coconut meat and drying the dessicated coconut. Energy in the form of electricity and heat can be met from the utilization of the coconut shell.
There are several technologies for utilizing these coconut shells so that products in the form of electricity and heat are obtained. The popular technology today is with a steam turbine boiler, with this technology the coconut shell is burned in a furnace and heats water in the boiler so that it produces steam to drive the turbine and then generate electricity through a generator. This technology is the same as in palm oil mills. In palm oil mill the fiber and part of the palm kernel shell (PKS) is used as fuel to produce electricity and steam is also used to sterilize fresh fruit bunches (FFB) before being processed into oil.
Another better technology is continuous pyrolysis. This in addition to producing electricity and heat also produces charcoal product. Coconut shell charcoal is high-quality charcoal and is much needed by a number of industries such as the briquette charcoal industry and activated carbon. In the pyrolysis technology the coconut shell is not burned directly, but is heated in a vacuum condition (absence of oxygen). Pyrolysis products such as syngas and biooil are used for electricity production and can also be heat, heat energy is also produced from the pyrolysis process itself which is exothermic, while charcoal is the main product of the pyrolysis process. 

1 comment:

Maximizing the Rate of CO2 Absorption from the Atmosphere Based on Biomass

Maximizing the rate of CO2 absorption from the atmosphere is very important considering the rate of addition of CO2 concentration to the a...