Wednesday, May 19, 2021

Production of EFB Pellet EFB or EFB Biochar ?

One of the main obstacles for palm oil mills to develop their business is the availability of electricity. With locations that are generally located in remote areas in the middle of palm oil plantations, palm oil mills do not get electricity supply from PLN (Indonesia State Owned Electricity Company). Eventhough electricity is very important in a production process, such as in the production of EFB pellets. Even though empty bunches or EFB in general are an environmental problem for palm oil mills. If every ton / hour of EFB pellet production takes 300 KW, then for production of 10 tonnes / hour (5,000 tonnes / month) 3 MW of electricity is needed, export of biomass fuels such as wood pellets and PKS (palm kernel shell)  with bulk shipments usually requires 10 thousand tons / shipment. So if the production of EFB pellets is planned for 10 thousand tons / month so that every month can export the EFB pellets, the factory capacity or EFB pellet production is 20 tons / hour (10,000 tons / month) 6 MW of electricity is needed. For palm oil mills, utilizing liquid waste or POME to become biogas is a potential source of energy for the production of electricity. However, with a palm oil mill capacity of 30 tonnes of FFB / hour, only about 1 MW of electricity is generated from POME biogas, so to produce 6 MW of palm oil mills with a capacity of 6 x 30 tonnes of FFB / hour are generated equal to 180 tonnes of FFB / hour. In fact, the average palm oil mill has a capacity of 45 - 60 tonnes of FFB / hour, so it is impossible to generate 6 MW of electricity from the palm oil mill's POME biogas.

The use of EFB pellets is the same as wood pellets and PKS is mainly for power generation. All three are biomass fuels. The high chlorine and potassium content in empty palm fruit bunches or EFB makes their use limited to power plants due to corrosion and scale causes. Not all power plants can use EFB pellets at large capacities or quantities. The use of coal-fired power plants with pulverized combustion technology can only be used with a small ratio or an estimate of less than 5%, but can be used more or even 100% in fluidized bed and stoker types of power plants. The capacity of fluidized bed and stoker type PLTU is generally much smaller than pulverized combustion.

When the biomass source is managed properly, the use of biomass fuel is an environmentally friendly and sustainable fuel. Biomass fuels like this are carbon neutral fuels, because they do not increase the concentration of CO2 in the atmosphere. This is because the biomass as a fuel source comes from plants whose growth is from the photosynthesis process, one of which uses CO2 from the atmosphere, so that when the biomass is burned, there is practically no addition of CO2 to the atmosphere. In general, there are 2 ways to overcome the CO2 concentration in the atmosphere which causes climate change and global warming, namely the carbon neutral scenario and the carbon negative scenario. In a carbon negative scenario, CO2 in the atmosphere will be captured and absorbed so that it is no longer released and the concentration of CO2 in the atmosphere can be reduced, as in the biochar application below.

Whereas in the production of biochar with pyrolysis, besides not requiring a large amount of electrical power for its operation, electricity can also be generated from the use of excess energy from pyrolysis itself. By using the excess energy from pyrolysis, the palm oil mill boiler fuel does not need to use palm kernel shells and fiber. The use of gas or liquid fuels from the excess energy of the pyrolysis process also makes burning emissions cleaner. To achieve more complete combustion, gaseous or liquid fuels are better than solid fuels. Palm kernel shells so that everything can be sold or even exported. The biochar product applied to palm oil plantations will also improve the quality of the soil so that fertilizer use can be reduced and the productivity of palm oil fruit will increase. Biochar also absorbs CO2 from the atmosphere so that the use of biochar in large palm oil plantations means that with massive applications it can also be used for carbon trading. Recent developments indicate that the use of biochar is increasingly widespread, such as biomaterials for construction, transportation, plastics, packaging, furniture and so on. The use of biomaterials for these products means substituting the use of fossil-derived raw materials.

So based on the above review, the production of biochar with pyrolysis is more profitable and easy to implement for palm oil mills compared to EFB pellet production. The addition of electricity production with a large capacity and the availability of sufficient raw materials is not easy and cheap for the average palm oil mill in Indonesia with a capacity of 45 - 60 tons of FFB / hour. Whereas in the production of biochar with pyrolysis, a certain amount of energy is produced which can be used for various purposes and the use of biochar is also multi-beneficial. Palm oil mills should consider this in particular in the aspects of waste management, plantation productivity, environmental aspects and business development, for more read here. Based on experience, the cost structure of the CPO or palm oil production business consists of about 80% of the cost of production is the cost of crops or plantation aspects, while the other 20% is the cost of processing or mill aspects. And the highest cost aspect of palm oil plantations is the cost of fertilization so that if the need for fertilizer can be reduced and the productivity of palm oil can be increased, of course it is very profitable, biochar is effective and efficient to use for this.

No comments:

Post a Comment

Calliandra Honey from Caliandra Energy Plantation

Calliandra honey can be said to be one of the best honeys in the world. The quality and taste of calliandra honey are above other honeys suc...