Laboratory equipment as a production unit or as a small factory (mini-mill) is needed both for learning (research and experiment) and as a production stage before reaching the commercial stage of a business. By observing and conducting trials on the mini-mill, in addition to getting a complete understanding of the production process from A to Z, we can also make detailed and in-depth observations of each stage of production in an easy and inexpensive way and provide a more complete picture for the commercial production process later. It is also easy to do research and experimentation on various kinds of raw materials, both single material and a mixture of several raw materials. Currently, there are many researchers and practitioners who want to try a raw material to make pellets but have difficulty finding partners or companies that can do it. Setting up equipment with mini-mill facilities is also much easier, in contrast to large factories. This is why in general large factories do not want to accept trials of making pellets from a certain material, because their focus is on production targets, unless they have R & D facilities for these trials.
Meanwhile, if the laboratory equipment is only in the form of functional tools such as cutting tools, crushing tools and so on but is not integrated into a production unit (even though the capacity is small), it will be difficult to imagine even more accurately designing an industrial or commercial factory. Even if a number of functional tools in the laboratory are integrated, which usually come from a number of manufacturers and have different capacities, operating the assembled mini mill is also not easy. That is why it is important to establish a complete line for the production of these pellets. The resulting pellet production can also be of two kinds, namely fuel pellets such as wood pellets and feed pellets such as leaf pellets, depending on the raw materials used.
And indeed on a commercial scale or large factory the pelletiser specification for fuel pellets such as wood pellets is different from the pelletiser for feed pellets. Pelletisers for fuel pellets such as in wood pellet production have a greater electric motor power about 3 times than a pelletiser for feed pellet production, for example for 1 ton/hour wood pellets need 150 KW while for feed pellets it is only 50 KW. In addition, the quality of the metal used for the production of the pelletiser is usually also different because the level of hardness of the raw materials is also different. Pelletiser is the main equipment or the heart of the process in pellet production, both fuel pellets (wood pellets) and feed pellets. Based on experience in the field, it turns out that there are many cases of failure of commercial wood pellet production due to errors in the selection of this pelletiser, namely the pelletiser for feed is used for wood pellets besides being not optimal, the machine life is short, even in a number of cases wood pellets are not formed so that the target production is not achieved. The main reason why this happened is because of being tempted by the price issue, namely the feed pelletiser is cheaper and in appearance it is also difficult to distinguish (especially the common people).In this small capacity pellet production, only one type of pelletiser is used, because the main purpose is more on the qualitative aspect, not on the quantitative aspect. A number of process stages in the production of fuel pellets (wood pellets) are also very similar to the production of feed pellets, so the equipment used is also similar or even the same. This is mainly so that the price of the production unit is not too expensive. In commercial pellet production, ring die pelletisers are more widely and commonly used than flat die types. However, because the ring die pelletiser is more expensive even though it is close to the real conditions of the pellet industry, the flat die pelletiser is also sufficient for the purpose at this stage.
Feed pellets have a longer history than fuel pellets, especially wood pellets, namely in the 1920s when Purina Animal Nutrition, one of the largest animal feed producers in the world today. With this pelletization, the material is in powder form, unpalatable by livestock , different densities become easier to use and increase uniformity. This pelletization technique was quickly in great demand by many feed producers, so that in 1930 there were a number of feed factories specializing in the production of these feed pellets. World feed pellet production also far exceeds fuel pellets (wood pellets), which is in the range of 1 billion tons per year, while wood pellets are in the range of 50 million tons per year. Both have strategic functions in human life. Feed pellets as a food chain for humans are needed and their production continues to be increased.
It is estimated that protein needs in 2050 need an additional 250 million tons per year, an increase of 50% compared to today. This is because according to the United Nations, the global human population is predicted to reach 9 billion people by 2050. The food sector is looking for a solution to the protein deficit due to protein demand per capita and population growth. Meanwhile, fuel pellets (wood pellets) are needed to save the earth from climate change. Wood pellets as carbon neutral fuel make it not increase the concentration of CO2 in the atmosphere which is a greenhouse gas that heats the earth's temperature. Decarbonization programs or substitution of fossil fuels for renewable energy, especially biomass fuel or wood pellets, continue to be improved throughout the world, as a reference you can read here and here. Energy plantations or legume plantations will be the solution to this problem, read in more detail here.
In addition to pellet production (both fuel pellets and feed pellets) with a slight modification, namely replacing the pelletiser with a briquette machine, it can also be used for briquette production. This is because the production process is almost the same, the two technologies are the same, namely the biomass densification technology group. The use of these briquettes is also for fuel the same as wood pellets, but these briquettes can also be charred (carbonized) so that they become charcoal briquettes. The production of charcoal briquettes in this way produces better quality than the production of charcoal briquettes with charcoal as raw material and then added adhesive and pressed. This charcoal briquette product is commonly known in the market as sawdust charcoal briquette, the production of which does not require additional adhesive (binderless briquette).