Showing posts with label soil fertility. Show all posts
Showing posts with label soil fertility. Show all posts

Tuesday, September 2, 2025

Premium Biochar and Compost Production from Organic Waste Processing

Biochar and compost production both use organic materials. The difference lies in their compatibility level. Wet, nutrient-rich organic materials with little lignin are more suitable for compost production. Dry, lignin-rich organic materials are more suitable for biochar production. Therefore, sorting these organic materials is necessary to achieve optimal results. With organic waste comprising up to 60% of municipal waste, the raw material requirements for both biochar and compost production are estimated to be substantial.

Biochar production is a thermal process, while compost production is a biological process. A biochar production unit, a pyrolysis unit, can be installed adjacent to and integrated with a compost production unit at municipal waste treatment facilities and similar facilities. The biochar product is then used to produce compost, improving the quality of the compost to premium compost and accelerating composting times. For more details, read here. Premium compost can also be sold at a higher price commensurate with its quality. Excess energy from biochar production or pyrolysis operations can be utilized in the waste processing of RDF fractions or others. 

The production potential of this premium compost is enormous. This makes it suitable for use on critical land from post-mining reclamation, which covers millions of hectares, or even hundreds of millions of hectares of degraded drylands. When premium compost is applied to unproductive or less productive land, it becomes fertile. For example, revegetation of post-mining reclaimed land will yield a variety of agricultural or plantation products that are economically, environmentally, and socially beneficial. Biochar, with its high carbon content, will persist in the soil for hundreds of years and, as a carbon sequestration measure, can be offset by earning carbon credits. 

Wednesday, July 16, 2025

Competing in Goodness in Lowering the Earth's Temperature

Competing to lower the global temperature is a good thing. Competing in good deeds is highly encouraged in Islam. The negative impacts of global warming can be felt on land and at sea, and therefore must be minimized. This is why various parties involved in this effort should collaborate and synergize to achieve this goal. The business aspect of this activity should be a secondary priority, so that a spirit of good deeds, collaboration, and synergy will be fostered. Technically, strategic sectors that are the main causes of global warming are an important priority to address, although other, more pressing matters must also take precedence.

There is an excess concentration of carbon (CO2) in the atmosphere that causes the earth's temperature to rise due to the greenhouse gas effect, but on the other hand there are billions of hectares of land on earth that need carbon in the form of biochar to increase soil fertility as well as to absorb CO2 in the atmosphere with carbon sequestration / carbon sink. If these two things can be synchronized, it will be an effective solution to reduce the earth's temperature. In 2024, CO2 emissions from fossil fuels were recorded at around 36.3 giga tons (36.3 billion metric tons) and the latest CO2 concentration according to the Mauna Loa observatory in Hawaii reached 429.25 ppm (on June 24, 2025). Meanwhile, on the land side, globally an estimated 1.66 billion hectares of land have been degraded due to human activities such as deforestation, overgrazing, mismanaged irrigation, and excessive use of chemicals. 

Biomass fuel, produced by producing wood chips and wood pellets, or biofuel, is a carbon-neutral renewable fuel or source, thus complementing biochar. Wood chips and wood pellets, or biofuel, do not increase CO2 emissions, and biochar absorbs CO2, acting as a carbon sink (carbon sequestration), or carbon-negative. 

Sunday, June 1, 2025

Important Parameters of Biochar Quality and Biochar Standards

The physical chemical properties (characteristics) of biochar are parameters of its effectiveness in its various different applications. Factors that affect the physical chemical properties of biochar are raw materials (feedstock), production operating conditions (production process), and treatment before and after processing (pre- or post-processing). And because biochar has different physical chemical properties, laboratory analysis is needed to predict the effectiveness of the biochar. Specifically, certain applications will require certain physical chemical properties so that the selection of the appropriate biochar product is very important. For example, biochar with a high surface area has great potential to absorb environmental toxins, metals and nutrients. This is so that biochar with these characteristics is suitable for environmental remediation applications. And because biochar works on various different contaminants, the biochar needs to be modified for a specific application.

The chemical properties of biochar that are usually used as references are organic carbon (Corg) and carbonates (as CaCO3), H/C ratio and fixed carbon (FC), ash content, and volatile matter (VM). While the physical properties that are usually used as references are bulk density, surface area and particle size distribution. And because the main application of biochar is for agriculture including plantations and forestry, namely to increase the productivity of agricultural, plantation and forestry products by increasing soil fertility, the parameters related to soil fertility are also important references. These parameters are nitrogen, pH & liming, liming equivalent, electrical conductivity, total potassium (K), total phosphorus (P) and metal.

Although biochar has multiple benefits both for improving soil fertility and also climate solutions in the form of carbon sequestration / carbon sink, so biochar products can be selected according to usage priorities. Optimizing the benefits between the two important things is certainly the best choice. The perspective or point of view for optimizing benefits is very dependent on a person's profession or expertise, for more details read here. Parameters in the form of organic carbon (Corg), H / C ratio and fixed carbon (FC) are mainly related to climate solutions, namely carbon sequestration / carbon sink or also commonly called BCR (biochar carbon removal) which can get compensation in the form of carbon credit. To be able to get carbon credit, biochar producers must follow the methodology created by the carbon standard institution (Puro Earth, Verra, European Biochar Certificate), so that BCR can be quantified and sold on the carbon market (currently in VCM = voluntary carbon market).

Meanwhile, regarding the priority in soil fertility, the biochar product made must come from a source rich in nutrients or plant nutrients such as from livestock manure. Biochar from livestock manure tends to have lower organic carbon (Corg) than biochar made from wood. Biochar with high ash content such as that from livestock manure usually also has a higher liming equivalent than biochar from wood. High volatile matter (VM) is also beneficial for soil fertility. VM containing gases such as carbon monoxide and methane, organic hydrocarbons, acids and tar and a number of inorganic compounds can be an important food source for soil microbes. A number of studies also show that biochar from livestock manure has a high portion of phosphorus (P) so that it can meet the P needs of plants, as well as its potassium / potassium (K) content.

Transactions or buying and selling of biochar (physical) or BCR credit require certain quality standards. Without an agreed standard, it will certainly be very difficult to determine a meeting point between the seller and the buyer. There are a number of institutions that develop standards for biochar, including the European Biochar Certificate (EBC), Organic Material Review Institute (OMRI), USDA Certified Bio-based Product and World Biochar Certificate (WBC). To obtain quality parameters or specifications of biochar that are in accordance with its use, a certain type of laboratory is needed. Not many laboratories can conduct this biochar test. Some laboratories that can do it include compost, soil, coal and activated carbon analysis laboratories. With a number of these technical supports, of course, the development of biochar for the future will be easier, especially with the various real benefits of biochar and the increasing public awareness of environmental sustainability issues, especially climate issues. 

Food Estate or Biochar? Indonesia becomes the Champion of Global Climate Solutions?

Currently, there are millions of hectares of land in Indonesia that are in dire need of biochar, namely dry land 122.1 million ha; post-mining land 8 million ha; critical land 24.3 million ha; total around 154.4 million ha. Meanwhile, the potential raw materials for biochar production are also abundant (agricultural, plantation and forestry waste) such as dry empty fruit bunch of palm oil around 30 million tons/year, baggase 2 million tons/year, corn cobs 5 million tons/year, cassava stems 3 million tons/year, waste wood 50 million tons/year, rice husks 15 million tons/year, cocoa shells and so on. With biochar, agricultural productivity will increase from an average of around 20% to even 100%.

If applied on a macro or national scale, say with a 20% increase in production, for example, rice production will increase to 36 million tons/year from the previous 30 million tons/year, corn will increase to 18 million tons/year from the previous 15 million tons/year, crude palm oil or CPO will increase to 60 million tons/year from the previous 50 million tons/year. This will save land use so that the opening of forest land for food crops and (bio)energy such as food estates may not be necessary or at least slow it down.

For example, Indonesia's current CPO production reaches around 50 million tons per year with a land area of ​​around 17.3 million hectares. This means that the average CPO production per hectare is only 2.9 tons or per million hectares produces 2.9 million tons. If biochar is used and there is a 20% increase, it means there is an increase of 10 million tons of CPO per year and this is equivalent to saving around 3.5 million hectares of land, or the use of biochar will slow down forest clearing for palm oil plantations.

There is a rough calculation that with an investment of 10 million US dollars, approximately 200,000 tons of biochar produced with more than 400,000 carbon credits will be produced over a period of 10 years. And for example, with a selling price of biochar of 200 dollars per ton and a carbon credit of 150 dollars per unit (per ton of CO2), then within 10 years, the income will be almost 10 times the investment or it is estimated that in less than 2 years the initial investment has been returned (payback period). Carbon credits sellers or biochar producers also try to get sales contracts for 5-10 years.

Of course when the price of biochar is higher and / or its carbon credit then of course the return on investment will be faster. And that does not include the utilization of liquid and gas products and excess heat from pyrolysis which also have economic potential that is no less interesting. 

Sunday, April 27, 2025

Biochar: Priority for Soil Fertility or Climate Solution First?

Perspective or point of view on biochar is greatly influenced by a person's expertise, while the driving force of its application is greatly influenced by factors that are the problems of the area or region. For example: climate scientists see soil improvement from biochar applications as an additional benefit (co-benefit). For soil scientists or farmers who use biochar as a soil amendment because of their practical experience that has a positive effect on soil fertility and the economic aspects of their farming, while climate benefits become additional benefits (co-benefits). And in reality the accumulation of benefits (including economic) and the effectiveness of providing environmental solutions will accelerate the use of biochar in the real world.

The photo taken from here

To maximize the benefits of biochar applications, the quality of biochar becomes very important, or in other words the physical and chemical properties of biochar control the level of its effectiveness for various applications. These properties are determined by factors, namely, raw materials, process conditions and before and after the production process. This is so that the biochar produced has different properties so that laboratory analysis is a method used to predict the effectiveness of the biochar. And also to qualify for certain incentives that apply in certain countries, the biochar produced can also meet certain criteria, for example the standards made by the IBI (International Biochar Initiative). Or to get carbon credit or BCR (biochar carbon removal) credit that has been applied internationally also requires biochar with certain criteria and quality, and for that biochar production must follow a certain methodology according to international carbon standard institutions such as Puro earth, Verra, and European Biochar Certificate (EBC). To get quality parameters or biochar specifications that are in accordance with their use, a certain type of laboratory is needed. Not many laboratories can do this biochar test. Some laboratories that can do this include compost, soil, coal and activated carbon analysis laboratories.

Currently the main and long-standing focus, namely the use of biochar for agriculture, plantations and forestry is to increase productivity / yield. However, in fact the added value that biochar can offer in its application in the soil, especially in cultivation, not only includes increasing crop yields, but also preventing the loss of humus in the soil, preventing nitrate leaching, and increasing water storage capacity to increase plant resistance to drought and its resilience to the climate crisis. As for how the fastest entry point for the biochar industry, for more details read here.

Monday, March 10, 2025

Urgency of Biochar Production Industrial Capacity

The provision or application of biochar to agricultural land follows the 4Rs rule, namely the right source (appropriate biochar raw material), right place (appropriate application area), right rate (appropriate dosage) and right timing (appropriate time). The physical and chemical properties of biochar differ depending on the raw material and production process. By following the 4R rules, biochar performance can be maximized. The effect of biochar on plants will be clearly visible (significant) when the 4R rules are met. With a dose / rate reaching 20 tons / ha (depending on the influencing condition factors), the need for biochar is also large. This is why biochar products are rarely sold online, namely because of the large volume.

Unlike soil amendments such as compost, the effects of biochar can be felt for quite a long time or for several types of agricultural crops, namely not only in one planting season, but repeatedly. This also makes the provision or application of biochar not as frequent as compost. And in the end, of course, the economic aspect is a determining parameter whether biochar makes agricultural businesses more profitable or not. The price of biochar on the market is an important concern for users or farmers.

The lack of biochar production in Indonesia is currently a barrier to biochar application in large agricultural lands, even when farmers' awareness of biochar is also increasing. This is the driving force for the importance of adequate biochar production, especially industrial capacity. Only with adequate biochar production can biochar application in agricultural lands or degraded lands be carried out optimally. The urgency of industrial capacity biochar production is even greater, especially when the biochar production also gets carbon credit, of course this will be even more interesting.

Monday, February 10, 2025

Stationary Auger : Industrial Pyrolysis for Indonesia and SE Asia

Global biochar production in 2023 is estimated to reach 350 thousand tons or equivalent to 600,000 carbon credits and is expected to continue to increase. From an economic perspective, revenues from biochar producers, distributors, value-added producers and equipment manufacturers exceeded $600 million in 2023, with a CAGR of 97% between 2021 and 2023. Revenues are projected to grow to nearly $3.3 billion in 2025. The existence of carbon credits is the second largest motivation for biochar production. With the existence of carbon credits, there has been a significant increase in biochar production from before. In 2023, this biochar carbon credit contributed the largest amount, namely 90% of carbon removal in the voluntary carbon market according to data from cdr.fyi.

And even biochar production where the income from direct sales of biochar is not that big or in other words they rely on income from biochar production then it is still a profitable business. As a tropical country, Indonesia can be said to be a biomass heaven both from agricultural / plantation biomass or forestry. If the biomass is converted into biochar then the production will be very large as well as the carbon credit. Direct sales of biochar (physical biochar) can also be done well because there are so many sub-optimal lands that can be repaired or upgraded using biochar, such as dry lands, critical lands, post-mining lands and so on, which amount to tens or even hundreds of millions of hectares.

Nearly 80% of biochar producers in 2023 will fall into the medium, large, and very large categories

The selection of production equipment that can produce certified biochar so that it can get carbon credit is important besides maximizing production capacity, it requires adequate production equipment. Stationary auger pyrolysis equipment is the right choice to meet the above requirements. In addition to producing biochar as the main product, by-products such as excess heat, biooil and syngas are additional benefits of the pyrolysis process with the stationary auger. The utilization and monetization of these by-products are an increasing driving force for biochar production with the stationary auger. Currently, there are still many biochar producers who do not have certification or standards for carbon credit, this also makes them unable to get income from carbon credit or just business as usual with biochar sales. Of course, this is not attractive to companies that will produce large-capacity biochar.

But why is biochar production in Indonesia and Southeast Asia still very small and not many people even know about biochar? This is related to low awareness of climate, sustainability and the environment and more specifically to biochar. Biochar as a solution to improve soil fertility so that productivity increases (both agricultural/plantation crops and forestry) as well as a climate solution with carbon sequestration. But with the high problem of climate awareness, sustainability and the environment, especially with the economic driving force in the form of carbon credits, it seems that the story will be different in the coming years. But there are indeed reasons related to the low participation of biochar producers in the carbon market, namely the costs and difficulties in obtaining certificates to sell carbon credits, as well as the costs of participating in carbon marketplaces. But with the large production capacity of industrial capacity with stationary auger equipment, the costs and difficulties in obtaining carbon credits will be commensurate with the benefits obtained.

Monday, December 30, 2024

Maximizing the Rate of CO2 Absorption from the Atmosphere Based on Biomass

Maximizing the rate of CO2 absorption from the atmosphere is very important considering the rate of addition of CO2 concentration to the atmosphere is not comparable to the rate of CO2 absorption. This is what makes the CO2 concentration continue to increase. To balance this speed, a strategy is needed to increase the rate of CO2 absorption. The use of biomass will be very effective and provide multiple benefits for human life. 

CO2 from the atmosphere needs to be captured through biomass production through the process of photosynthesis in plants. Fast-growing species of plants that have high photosynthesis rates are needed for this. Furthermore, biomass, especially wood from fast-growing species of plants, is used as raw material for biochar. Furthermore, biochar is used to improve soil fertility (soil amendment) in various types of agricultural and forestry plants.

Biochar production with slow pyrolysis will also produce excess heat, syngas and biooil that can be used as energy sources. The benefits of biochar production will be obtained from the sale of biochar, the sale of carbon credits and the use of slow pyrolysis by-products. With conditions like this, efforts to increase the speed of CO2 absorption from the atmosphere should be increased. How fast and how much CO2 volume can be absorbed will depend on the type of fast growing species used, the area of ​​planting and the capacity of biochar production. 

Biochar For Patchouli Plantation

Indonesia is famous for producing various essential oils, including patchouli oil, clove leaf oil and so on. The main use of essential oils is mainly for food, pharmaceuticals, fragrances (perfumes). The potential of this country to develop essential oils is very large due to climate factors, land area and soil fertility. World export-import statistics data show that consumption of essential oils and their derivatives has increased by around 10% from year to year. Of the 70 types of essential oils traded on the international market, citronella oil, patchouli, vetiver, ylang-ylang, cloves, pepper, and jasmine oils are supplied from Indonesia. Indonesia is the largest country in Southeast Asia producing essential oils and is among the top 10 in the world.

Patchouli production centers in Indonesia are in Bengkulu, West Sumatra, and Nangro Aceh Darussalam. The quality of Indonesian patchouli oil is known to be the best and controls 80-90% of the world's market share or the largest supplier of patchouli oil in the world. This patchouli oil comes from the distillation of dried leaves to extract the oil which is widely used in various industrial activities. Patchouli oil is used as a fixative or binder for other fragrance ingredients in perfume and cosmetic compositions. The area of patchouli planting reaches 21,716 ha spread across 11 provinces in Indonesia, and in 2008 about 2,500 tons of patchouli oil were produced.

Patchouli plants commonly cultivated in Indonesia are Aceh patchouli because the oil content is > 2% and the oil quality is patchouli alcohol (PA) > 30% higher than Java patchouli which has an oil content of <2%. Furthermore, with Aceh patchouli, there are three varieties of patchouli plants found in Aceh, namely Tapaktuan patchouli, Lhokseumawe patchouli, Sidikalang patchouli. The PA levels of the three varieties vary, namely: Tapaktuan (28.69-35.90%), Lhokseumawe (29.11-34.46%), and Sidikalang (30.21-35.20%).

Patchouli Oil Production in Sentra Province 2015-2020**)

One of the factors that support plant growth and optimal production is the availability of sufficient nutrients in the soil. The level of nutrient availability for patchouli plants must be optimal to obtain high growth and oil content. Patchouli is known to be very greedy for nutrients, especially nitrogen (N), phosphorus (P) and potassium (K). Patchouli plants are among those that require quite a lot of nutrients, so that production continues to run optimally, fertilizer application is carried out very seriously. This is so that the level of soil fertility must be maintained optimally if we expect optimal patchouli agricultural production. Therefore, in the shifting patchouli cultivation system, there will be a very rapid decrease in land fertility which will damage the land.

Patchouli can be cultivated on dry land, thus the development of patchouli plants is very relevant to the potential of dry land which is quite extensive in Indonesia compared to rice fields. In fact, dry land is the most widely distributed sub-optimal land, which is around 122.1 million ha consisting of 108.8 million ha of acidic dry land and 13.3 million ha of dry climate dry land. The development of patchouli plants has a dual purpose, in addition to increasing farmers' income, it also increases the productivity of dry land which is widely spread in Indonesia.

To improve land quality, namely by applying biochar. The application of biochar to agricultural land functions as a soil amendment that can improve the chemical properties of the soil (pH, cation exchange capacity, total N, and available P), the physical properties of the soil (bulk density, porosity and the ability of the soil to hold water). Improvement in the quality of the chemical and physical properties of the soil has an impact on the availability of nutrients and water through the ability of biochar to retain nutrients and water. Ultimately, the addition of biochar has implications for increasing the productivity of patchouli plants. In the future, it is hoped that with the application of biochar, more suboptimal and degraded lands which can be restored and plants productivity increased.

Optimizing the use of dry land for food crop cultivation needs to begin with land rehabilitation efforts so that plants can produce optimally. Soil amendments that are cheap, readily available and can last a long time in the soil are expected to be able to trigger the rate of increase in dry land productivity. The potential for agricultural waste to be converted into soil amendments (biochar) in Indonesia is quite large. Biochar applications have been proven to improve the quality of physical and chemical properties of the soil, as well as increase water availability. Crop productivity also increases in line with the recovery of land quality.

Biochar can also be added during composting so that more nitrogen (N) content can be absorbed in the biochar. The higher the nitrogen (N), the better the compost quality will be. Total N is one of the macro elements needed by plants in large quantities, accounting for 1.5% of the dry weight of the plant. Nitrogen is useful in the formation of protein, a component of plant chlorophyll, and if morphologically N plays a role in the formation of leaves and stems of plants or the vegetative formation of plants. Phosphorus is an absolute nutrient needed by plants after nitrogen. Symptoms of phosphorus (P) nutrient deficiency are seen as the color of the plant becomes dark green or purplish green which is then followed by older leaves turning purplish. The addition of biochar and compost, in addition to increasing the productivity of patchouli leaves, can even increase the yield of patchouli oil from an average of 2% to 4% and the patchouli alcohol content of patchouli oil from an average of 32% to 40%.       

Sunday, October 27, 2024

Biochar from Wood Waste and Forestry Waste

The era of decarbonization and bioeconomy continues and continues to grow over time. While some people focus on the carbon neutral sector such as the production of biomass fuels such as wood pellets, wood briquettes or wood chips, people who focus on negative carbon seem to be fewer, including the use of CCS (Carbon Capture and Storage) and biochar production. Compared to CCS, biochar production with pyrolysis is easier and cheaper so it is projected to become a future trend. Logically, the negative carbon scenario is actually much better because in addition to reducing the concentration of CO2 in the atmosphere, while the neutral carbon scenario only does not increase CO2 emissions in the atmosphere, but does not reduce or absorb CO2 in the atmosphere. CO2 sequestration or biochar carbon removal (BCR) is currently also the most industrially relevant carbon removal technology. BCR is a key solution for real climate change mitigation today and its development is very rapid. BCR also has a vital role in the carbon removal technology portfolio. 

Woody biomass, especially from wood industrial waste and forestry waste, is a potential raw material for biochar production, even this type of wood biomass is the best raw material because it can produce high quality biochar, namely fixed carbon of more than 80%. The potential for wood biomass raw materials in Indonesia is very large, estimated at 29 million m3/year from forest harvesting waste, and 2 million m3/year from wood processing industry waste including 0.78 million m3 in the form of sawdust (the yield of the sawmill industry ranges from 50-60% and as much as 15-20% consists of sawdust). And that does not include if there is a biomass plantation or energy plantation dedicated to biochar production.

With the condition of agricultural land, plantations and forestry which are experiencing a lot of degradation, the need for biochar is also very large. Among the factors causing the decline in land fertility is the use of chemical fertilizers and pesticides for decades continuously and tends to be excessive. This causes a decline in soil quality which has an impact on crop production because it makes the land more acidic and hard which is estimated to reach millions of hectares. In addition, the price of chemical fertilizers is increasingly expensive and difficult to obtain, which results in low agricultural production, so the government is forced to import several agricultural commodities to meet the needs of the community. This actually does not need to happen considering the potential land in Indonesia is very large, it only needs to improve the condition of the land so that it can be optimal again. Making damaged land fertile is not difficult, it only takes perseverance to repair and care for the land so that it continues to be fertile.

Meanwhile, dry land consists of ultisol soil of 47.5 million ha and oxisol of 18 million ha. Indonesia has a coastline of 106,000 km with a potential land area of ​​1,060,000 ha, generally including marginal land. Millions of hectares of marginal land are spread across several islands, have good prospects for agricultural development but are currently not well managed. The land has a low fertility rate, so technological innovation is needed to improve and increase its productivity. Not to mention post-mining land which is almost all very damaged and also covers millions of hectares. And biochar is the right solution that can restore the condition of the land to be fertile again. 

Slow pyrolysis is the best technology for biochar production. But the technology used must be efficient and emissions meet the threshold standards of the country concerned. In addition, excess heat and/or liquid products and gas products from pyrolysis should also be utilized. With the criteria for pyrolysis technology as above, in addition to the quality and quantity of products, namely biochar, can be maximized, the production process also does not cause new problems in the form of environmental pollution. This is very much in line with biochar business activities so that it becomes a solution to the problem of industrial biomass waste from wood and forestry waste as well as a solution to climate problems. Even the utilization of by-products (excess heat and/or liquid products and gas products from pyrolysis) can also encourage the emergence of other environmentally friendly and renewable products.

In economic terms, the outline can be as follows, namely with an investment of 10 million US dollars, approximately 200,000 tons of biochar with more than 400,000 carbon credits will be produced over a period of 10 years. Or if with an investment of 100 million US dollars, almost 2 million tons of biochar and more than 4 million carbon credits will be produced over a period of 10 years. And for example, with a selling price of biochar of 100 dollars per ton and also a carbon credit of 100 dollars per unit (per ton of CO2), then within 10 years the investment has increased 6 times or it only takes about 1.7 years for the initial investment to return (payback period). Of course, when the price of biochar is higher and / or its carbon credits, of course the return on capital will be faster. And that does not include the utilization of liquid and gas products from pyrolysis and excess heat which also have economic potential that is no less interesting. The trend of the future business era will not only focus on financial profit but also provide solutions to environmental problems and climate problems, and of course solutions to social problems by creating jobs.

Wednesday, November 8, 2023

Why Is It Better For Palm Oil Mills To Use Pyrolysis Rather Than Combustion Furnaces?


The palm oil mill production process or CPO production always requires steam for sterilization, this means a boiler is needed. The heat needed by the boiler usually comes from a furnace with fuel in the form of mesocarp fiber and palm kernel shells. Apart from being used for sterilization, the steam is also used to rotate turbines and produce electricity. With continuous pyrolysis, heat for the boiler can be supplied from syngas and biooil products. Apart from that, pyrolysis also produces biochar as the main product and pyroligneous acid, which is a kind of wood vinegar. The last two ingredients will be very useful in palm oil plantations. Using these two fuels (gas and liquid fuel) will make the furnace produce cleaner smoke compared to burning solid fuel in the form of mesocarp fiber and palm kernel shells which is usually done up to now.

Many palm oil plantations are on acidic soils so the pH needs to be raised and biochar can be used effectively. The biggest operational cost for palm oil plantations is fertilizer and the use of biochar will increase fertilizer efficiency thereby reducing fertilizer input and saving costs. The application of biochar in palm oil plantations apart from improving soil quality thereby increasing the productivity of palm oil fruit or FFB (Fresh Fruit Bunch) is also part of the climate solution, namely carbon sequestration which receives compensation in the form of carbon credits. The carbon credits will also provide additional income for the palm oil company. Apart from that, pyroligneous acid can also be used as fertilizer and biopesticide.

The development of combustion technology is also increasingly developing, starting with the use of moving grates to reciprocating grates used to increase boiler efficiency. But the basic question is how profitable is the use of this technology for palm oil companies in overall? The use of the combustion furnace only increases the efficiency of the boiler, whereas the use of continuous pyrolysis in addition to sufficient boiler heat can also produce other benefits in the form of environmental and financial benefits. Environmental benefits from improving soil fertility conditions and minimizing fertilizer being leached or lost into the environment with the slow release fertilizer technique, for more details read here and also the income from carbon credits which is also big.
The application of biochar is for palm oil plantations, while biochar production is from palm oil mills, while the plantation division and mill division are two separate organizations within the palm oil company. The role of the general manager in particular is needed to handle this so that the company's big goals as a profitable, environmentally sound and sustainable company can be achieved. Factors in the form of maximizing profits, improving land and the environment, as well as being part of the climate solution with carbon sequestration will be a strong driving force for the use of continuous pyrolysis compared to combustion furnaces.

Wednesday, August 2, 2023

Biochar and Specific Organic Fertilizer for Post-Mining Reclamation Treatment

Mining activities are not just digging, loading and transporting, but environmental sustainability is also an important thing that must be considered. Even post-reclamation has become an obligation for mining companies with severe sanctions if neglected. Environmental damage due to mining if left unchecked will become a serious environmental problem such as natural disasters, and become a bad legacy for future generations. This means that post-mining reclamation must be carried out properly or adequately so that the negative impact on the environment can be minimized or even eliminated. Reclamation planning and implementation needs to be done well so that the reclamation goals can be achieved.

Low fertility on post-mining land is indeed a separate problem for revegetating the land. When a mining company has good management of overburden (OB) and top soil so that it can be returned (backfill) to the former mining pit (void) as before, the decline in soil fertility can be minimized. But if the management is bad, the fertility of the soil will drop drastically or be severely damaged so that in these conditions certain treatments need to be carried out to restore, improve or increase the fertility of the soil. The condition of land that has low fertility or is like barren land is almost the same as sandy land. In general, coastal sandy land has the following characteristics: sandy soil texture (90%), granular soil structure, loose consistency, low nutrient content, low soil ability to store nutrients, very fast permeability, drainage and infiltration, porous (majority with mesopores and macropores, and less of micropores), low water holding capacity, low soil ability to support plant growth and relatively high salt content or is a marginal land for agriculture or plant cultivation, so the treatment approach on sandy land with post-mining land is an effort effective approach.

Agriculture or cultivation of sandy land can be done for both seasonal and annual crops, the same goes for post-mining land. Factors of effectiveness and efficiency need to be done to get optimal results such as the type of nutrient and its amount, water requirement and so on. Conditioning the land so that it can hold water and nutrients must be done so that the added fertilizer can be utilized properly. Minimum input so that production costs can be reduced or economic factors are other important things. With post-mining land areas that can reach thousands of hectares, the input in the form of quality fertilizer is a must. In addition to inorganic fertilizers as macro elements, organic fertilizers as a provider of micro elements also need to be added. Specific organic fertilizer according to land conditions and plant needs can be made for this purpose. The use of compost with volumes ranging from 20-30 tons/hectare can be significantly reduced by using this specific organic fertilizer.

Sandy soils generally have high P and K content. The function of organic matter, in this case manure, can stimulate the availability of P nutrients that have accumulated in the sandy soil in the form of total P, so that available P becomes greater. With the availability of P, the available K is also greater, because P interacts with K. Amelioration technology to increase soil fertility is needed. Amelioration itself is an effort to improve soil fertility through the addition of certain materials. Amelioran is a substance that can increase soil fertility by improving physical and chemical conditions. Biochar as a soil amendment will be effective for this purpose, even when compared to other soil amendments, biochar has many advantages, one of which is being able to last or not decompose in the soil for hundreds of years. While increasing the efficiency of using biochar is by designing slow release fertilizer (SRF) so that the release of fertilizer is according to plant needs or can be used by plants optimally.

Plants are composed of 92 elements, but only 16 are essential for their growth and development. Of the 16 elements, elements C, H, and O are obtained from air and water (in the form of CO2 and H2O), while 13 other essential mineral elements are obtained from the soil and are generally classified as "nutrients". There are 6 macro nutrients namely N, P, K, S, Ca and Mg. These macro elements are needed by plants in large quantities with a critical content (value) between 2 – 30 g/kg dry weight of plants. These macro nutrients are divided into two, namely primary nutrients (N, P, K) and secondary nutrients (S, Ca, Mg). Primary nutrients are provided in the form of all types of plants and all types of soil. Meanwhile, secondary nutrients are only for certain types of plants and certain types of soil. While micro nutrients consist of 7 elements consisting of 5 elements which are metals namely Fe, Mn, Zn, Cu and Mo, and 2 non-metallic elements namely Cl and B. The need for micro nutrients is relatively small ranging from 0.3 – 50 mg/kg dry plant weight. The combination of macro fertilizers and specific organic fertilizers will maximize plant growth.

Saturday, April 22, 2023

The Importance of SRF (Slow Release Fertilizer) With Biochar in Palm Oil Plantations

Biochar is not a fertilizer so even the nutrient content in biochar can be ignored. Even though there are a number of biochars that contain certain nutrients, this is a special matter and really depends on the raw materials used. Biochar is a soil amendment that functions to improve soil properties such as soil structure including increasing soil porosity/soil friability so that roots can penetrate deeper, soil aeration, water availability, shortening the age of harvest, inhibiting the development of plant pests and retaining nutrients and reducing soil acidity. Compared to other soil amendments which have weaknesses, including the need for large and continuous amounts because they decompose quickly, have the potential to negatively affect the climate, and introduce disease-causing microbes/pests, biochar has many advantages, including the volume required is not large enough, not continuous and able to survive in the soil (helps conserve carbon in the soil) is not decomposed for hundreds or even thousands of years. The above makes biochar can function to improve soil fertility and climate solutions (carbon sequestration / carbon sink) or an action to increase organic matter on agricultural land or plantations and mitigate the effects of climate change. 

Even so, biochar can be used to make fertilizer, namely slow release fertilizer (SRF). SRF is a fertilizer whose release is regulated to provide maximum growth effect or SRF is designed or modified fertilizer for controlled fertilization according to plant needs so as to provide increased use efficiency and at the same time increase yield or harvest. This is motivated by the low efficiency of fertilization so that even more is wasted than is utilized or low NUE (nutrient use efficiency). The function of biochar in SRF is as a slow release agent in the fertilizer because it has a porous structure. In making SRF, several methods can be used, including increasing the size (granulation, pellets, etc.), smoothing the surface of the fertilizer, mixing it with other materials that are difficult to dissolve (slow-release agent) and covering the fertilizer with certain materials so that the release of the fertilizer becomes slow (coating). The use of SRF is becoming popular to save fertilizer consumption, increase yields and minimize environmental pollution. 

Soil fertility is a complex trait or condition that must be kept optimal, especially regarding this fertilization. The component of soil fertility itself includes a number of things, namely the depth of the soil solum, soil structure, nutrient content, storage capacity, humus content, number and activity of soil microorganisms, and the content of toxic elements. Productive soils with high soil fertility, both naturally and/or due to human actions, are mainly due to the following characteristics: nutrients in the soil are mobile and easy to obtain, the ability of the soil to convert fertilizer into easily available forms, the ability of the soil to store nutrients dissolved in groundwater from the leaching process, the ability of the soil to provide a natural balance of nutrient supplies for plants, the ability of the soil to store and provide water for plants, the ability to maintain good soil aeration to ensure the availability of oxygen for roots, and the ability of the soil to bind (fix) nutrients and convert them into forms available to plants. Soil fertility must guarantee high, consistent and sustainable production.  

An understanding of the nutrient composition of fertilizer and its release mechanism will help make strategic plans to slow down the release of the fertilizer at a certain level. Compared to conventional fertilizers slow release fertilizer (SRF) has a very slow release speed which can be tens of times slower so that fertilization efficiency increases significantly. It is estimated that more than 50% of fertilizer is wasted due to various reasons including evaporation, immobilization in the soil and leaching due to water, for example due to rain or irrigation. This inefficiency of fertilization is not only detrimental from an economic aspect as well as the environment, namely making the soil acidic, killing soil microbes, and water-soluble fertilizers that can poison water that may be consumed by humans and animals.

Currently, developing countries use more than 60 million tons of fertilizer per year, while according to the Food Agriculture Organization (FAO) world fertilizer consumption reached 190.4 million tons in 2015. With this low level of efficiency, can be imagined how much fertilizer is wasted useless and only pollute the environment. Regarding SRF, the dose of biochar use must also be measured properly because the use of biochar that exceeds the dose will be useless. This is due to the hydrophobic nature of biochar, so that the excess dose does not or only a little can release the fertilizer slowly.

A number of parameters to be observed for administering biochar as SRF are the amount of FFB (fresh fruit bunch) production and its quality (yield of CPO, and its FFA content), continuity of fruiting throughout the year, and the level of uniformity of fruit maturity in one bunch. And it turns out that the use of biochar gave significant positive results, namely FFB production increased by more than 20%, fruit maturity uniformity was almost 100%, CPO yield was more than 25%, and FFA was only 2-5%. With the high production of FFB and the yield of CPO, the intensification of palm oil plantations should have been carried out rather than the extensification that was suspected of being an attempt to convert forest functions or deforestation which tends to receive negative attention from various parties. For more details, read here. There are still many things that can be optimized so that the palm oil industry is efficient, environmentally friendly and sustainable.

Tens of millions of tons of empty fruit bunches (EFB) at the palm oil mills are potential raw material for biochar production as well as tens of millions of hectares of oil palm plantations that can be used for biochar applications. In addition to overcoming the problem of biomass waste, biochar production also produces energy that can be used for the palm oil mill itself, in more detail, please read here. Compared to the production of fuel pellets from empty fruit bunches (EFB pellets) and the production of electricity from empty fruit bunches, the production of biochar has many advantages and advantages both economically and environmentally. In the end, modifying the fertilizer according to the use of the biochar will significantly increase the nutrient use efficiency (NUE) in the fertilizer, ensuring the effective circulation of nutrients and mitigating climate change with carbon sequestration.
 

Replanting Palm Oil Plantations and Utilizing Old Palm Oil Trunks Waste (Presentation Version)

Aging plants are one factor in declining palm oil productivity. Palm oil trees begin to decline in productivity after 20 years and need to b...