Showing posts with label empty fruit bunch. Show all posts
Showing posts with label empty fruit bunch. Show all posts

Friday, June 21, 2024

Why is There No Biochar Production for The Palm Oil Industry Yet?

Even though biomass waste is abundant in the palm oil industry, both in the plantation area and in the palm oil mill area, most of the biomass waste, especially empty fruit bunches or EFB, is still not utilized or is simply piled up or thrown away. In fact, if the palm oil industry has a strong vision about maximizing profits by minimizing the occurrence of waste, especially biomass, and maximizing environmental sustainability as well as being part of the climate solution, then biomass waste, especially empty fruit bunches or EFB, is a big opportunity.  Currently, special department in the palm oil industry that specifically deal with sustainability issues are starting to be created by palm oil companies. Waste management issues including the utilization of EFB, reducing soil and water pollution due to fertilizers and increasing fertilizer efficiency are the concerns of the sustainability department.

The empty fruit bunches or EFB can be used as fuel so that most or all of the palm kernel shells or PKS can be sold directly and even exported. Palm oil mill boiler fuel currently uses fuel in the form of palm fiber (mesocarp fiber) and some palm kernel shells / PKS, which can be replaced using empty fruit bunches (EFB) and palm fiber (mesocarp fiber) and without palm kernel shells / PKS. Palm kernel shells / PKS are a very popular biomass fuel in the global market that competes fiercely with wood pellets. By being able to sell all palm kernel shells / PKS and at the same time utilize empty fruit bunch / EFB waste, the palm oil industry will provide many economic benefits.

The use of empty fruit bunches / EFB and mesocarp fiber as a heat source for the boiler is not burned as usual or as is done by all palm oil mills today but must be gasified or pyrolyzed so that another product is produced in the form of biochar. Although gasification can be used to produce biochar, pyrolysis is more recommended because the quality and quantity of biochar will be better. The biochar can later be used for the palm oil plantation itself. The use of biochar in palm oil plantations will significantly save on fertilizer use as well as reducing water and soil pollution due to inefficient use of fertilizer. The biggest cost in operating a palm oil plantation is fertilizer, so by using biochar these operational costs can automatically be reduced. Biochar will become a slow release agent so that fertilizer use will be more efficient or increase NUE (Nutrients Use Efficiency).

Empty fruit bunches / EFB and mesocarp fiber are solid waste from palm oil mills so the waste is located around the palm oil mill, while biochar is used for palm oil plantations. In palm oil companies, management is generally separated between the plantation and mill departments. The use of biochar in palm oil plantations while the raw material comes from palm oil mills requires special arrangements regarding this matter. This could be, for example, trucks transporting fresh fruit bunch / FFB from the plantation to the palm oil mill, then after the FFB is unloaded at the mill, they then go to the plantation again carrying biochar from the palm oil mill.

Currently, no one is utilizing empty fruit bunches / EFB and palm mesocarp fiber as a source of boiler heat and biochar production. The main factor causing this is the main orientation or vision of the palm oil company itself as described above. This is predicted to change soon as awareness of climate issues increases and reaches all levels, especially in sectors related to energy and sustainibility. Moreover, when biochar is applied to plantation land, it also gets carbon credit as carbon sequestration. The smoke coming out of the boiler furnace will also be cleaner as seen from its opacity. The use of gas and liquid fuels from pyrolysis by-products will produce better combustion quality as well as smoke from the chimney. And even the liquid products from pyrolysis can also be used as biopesticides and organic fertilizers. Boiler efficiency will also increase because it uses boiler feed water (BFW) in the form of hot water from the condenser output of the pyrolysis unit.

Apart from old palm oil mills which really want to upgrade their industrial energy systems and fertilizer efficiency in their plantations including sustaibility according to this vision, new palm oil mills whose status is in the development stage should be able to apply this concept more easily. New palm oil mills can immediately follow developments and demands of the times so that they become trend setters with this vision. Being a pioneer and trend setter is indeed more difficult and even risky than just being a follower, but this will raise the reputation and become a leader in the industry so it should also have a positive impact on the company's business performance. A worthy effort.

Saturday, April 13, 2024

Upgrading the Palm Oil Industry in Indonesia

With Indonesia's palm oil plantation area reaching around 15 million hectares and palm oil mills reaching 1000 units, efforts to upgrade the palm oil industry are important and strategic. Indonesia's palm oil or CPO production per year is around 46 million tons (while Malaysia is in second place at around 19 million tons/year). Efforts to upgrade the palm oil industry will increase productivity/efficiency, sustainability and encourage the creation of new products/markets as well as added value for palm oil. Things that can be upgraded include a number of key areas including bioenergy, biomaterials and oleochemicals, food and feed, soil fertility (land, soil and cultivation), post-harvest and processing, waste processing and the environment as well as socio-economics, management and business.

One concrete thing that can be done is the production of biochar from palm oil mill waste, especially empty fruit bunches (EFB) and palm fiber (mesocarp fiber). Biochar production by pyrolysis will produce excess energy (syngas & biooil) which can be used as boiler fuel in palm oil mills. Furthermore, the application of biochar with fertilizer on palm oil plantations will become slow release fertilizer (SRF), thereby increasing nutrient use efficiency (NUE). The condition of many oil palm plantations on acidic soil will also increase in pH when biochar is applied.

In palm oil plantation operations, fertilizer is the highest cost component so that if you can increase fertilizer efficiency it will provide significant benefits. The use of biochar is the solution, namely SRF. SRF also minimizes environmental pollution due to the use of fertilizer. Meanwhile, in palm oil mill operations, energy is a vital component, and if this can maximize the use of waste that has no economic value, it will certainly be very economical apart from of course overcoming environmental problems caused by this waste. Currently, palm oil mills use palm fiber (mesocarp fiber) and some palm kernel shells (PKS/palm kernel shell) for boiler materials, while generally the empty fruit bunches (EFB) have not been used, even though these palm kernel shells (PKS) can be sold directly and sell well. This means that if the energy source only comes from palm fiber (mesocarp fiber) and empty fruit bunches (EFB), 100% of the palm kernel shells (PKS) can be sold. This can be done by pyrolysis.

Biochar in the soil can last hundreds or even thousands of years. Biochar which comes from agricultural waste such as empty fruit bunches (EFB) and palm fiber (mesocarp fiber) will become a carbon sink through carbon sequestration, so that the concentration of CO2 in the atmosphere is reduced as long as the biochar is not decomposed. From a climate perspective, this is very beneficial and later you can get compensation in the form of carbon credits. A number of standards and verification methods to facilitate monetization are currently being developed.

Empty fruit bunches (EFB) and palm fiber (mesocarp fiber) are waste from palm oil mills, whereas biochar is applied in palm oil plantations. Management in the palm oil industry generally separates the mill division and the plantation division, so new management methods are needed if biochar production using pyrolysis is carried out. Apart from using biochar for core plantations (managed by palm oil company), it can also be used for plasma plantations (managed by farmer).

Thursday, June 17, 2021

Biochar as a Solution to Deforestation in Indonesian Palm Oil Plantations

Palm oil trees are not native to Indonesia but come from West Africa and were brought by the Dutch colonialists in the mid 19th century. At first they brought 4 grains and planted them in the Bogor Botanical Garden which is now a palm oil monument. The first palm oil plantation were established in Indonesia in the early 1900's in North Sumatra. The development of the palm oil industry and its subsequent plantations is very rapid, especially in the last 10 years and it is currently estimated that the area of Indonesian palm oil plantations reaches 15 million hectares. As the largest vegetable oil-producing plant in the world and the area of palm oil plantations is also the largest in the world, of course, palm oil has a strategic value in the Indonesian economy. The average rate of growth for Indonesian palm oil plantations is 6.5% per year or the equivalent of about 500 thousands up to 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% in average. In fact, the largest increase occurred in 2017 which increased by 2.8 million hectares. From 2015 to 2019, the total area of palm oil increased by 3.7 million hectares. Extensification or expansion of palm oil plantations turned out to be many "accused" and became the world's spotlight as from the conversion of forest land functions, so that there was a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions worsened the image of Indonesian palm oil which in turn affected the selling price of palm oil, both CPO (crude palm oil) and its derivative products. Improving the image is also not easy. One of the effective measures is to stop the extensification effort so that forest land remains as forest land and does not turn into palm oil plantations. Biochar can be an effective solution to this problem. By increasing the productivity of fresh fruit bunches (FFB) from the usage of biochar, new palm oil plantations do not need to be opened again. Assuming an average productivity increase of 20% occurs, CPO production will also increase by 20% or equivalent to 2 million tons. The increase would be equivalent to new land clearing of more than 2 million hectares. Certainly not a small land area. With the 20% increase in production, it is very likely that the national needs for CPO needs have been met and the same goes for the export market.

With the extensification of palm oil land of more than 1 million per hectare every year but the increase in palm oil fruit (FFB/fresh fruit bunch) production is only 11%, it is certainly less attractive and must be avoided, especially when the world's attention on deforestation is getting stronger. This also indicates the low productivity of the palm oil plantations. In fact, by improving soil quality, the productivity of palm oil fruit can be significantly increased and the clearing of new land for palm oil plantations can be avoided. Biomass wastes in palm oil plantations and in palm oil mills can be used for the production of biochar.

In palm oil mills, this biomass waste is easier to process in large quantities, especially empty fruit bunches (EFB). An average palm oil mill can produce 200 tons of waste per day of EFB. Meanwhile, in palm oil plantations, biomass waste, such as palm fronds, leaves and stems, is the raw material for the production of biochar. Palm oil trunks even have a lot of negative impacts when they are not treated adequately or are only left to rot in the plantation, giving rise to horn beetle pests, for more details read here. Optimizing the utilization of biomass waste has multiple benefits, not only preventing environmental pollution by the waste, and can be described as the scheme below.


In terms of technology, biochar production technology is also very varied, from simple technology (low tech, low cost) that is cheap to advanced high technology that is efficient, precise process control but at a higher price. In the palm oil mill, it will be effective to use high technology so that it can be integrated with the operations of the palm oil mill. The excess energy from the pyrolysis process will also replace boiler fuel which has been using fiber and palm kernel shells (PKS). There are indeed many advantages of palm oil mills when doing the production of biochar, for more details, please read here. Production of biochar with empty fruit bunches or EFB biochar is also more profitable than EFB pellets, a more detailed explanation can be read here. Meanwhile, for people who have palm oil plantations as part of society palm oil producers (Plasma) or independent plantations, they can use simple technology (low tech, low cost) for the production of biochar. Biochar production in a simple way can also take advantage of excess energy for various small business activities such as those carried out in Tanzania, Africa. In this way, the community in addition to producing biochar also gets a source of energy including reducing the use of firewood which can be obtained from cutting down trees in protected forests or reducing deforestation pressures.

Fertilizer is the highest cost component in the palm oil plantation operations. Besides being able to increase the productivity of palm oil fruit or FFB, Biochar can also reduce the need for the use of fertilizers. An increase in soil pH makes nutrients easily absorbed by palm oil trees and also increases soil microbial activity which increases fertility is one of the benefits of using biochar. And when the performance of the productivity level of palm oil plantations has been able to be achieved and maintained, a number of other improvements can also be made. From the industry point of view, raw materials are a vital factor in terms of availability, continuity of supply and quality, including palm oil mills. Moreover, the plantation aspect of CPO production holds a portion of 80% while the factory or the mill aspect is only 20%. This confirms that the plantation aspect plays a vital role in the supply of these raw materials, so that efforts to maximize productivity, including maintaining productivity level performance, are very important and a top priority. Meanwhile, the change in palm oil plantations from monoculture to polyculture (mixed plantation) is one of the further improvement that can be made. Extensive monoculture plantations have the potential to be susceptible to disease, so they need to be avoided. Technically, how much monoculture area is still effective, especially for palm oil plantations, there are no convincing findings.

Thursday, May 6, 2021

Increasing Energy Efficiency in Palm Oil Mill Operations Using Pyrolysis

Energy utilization in the form of steam production which is then used for electricity production through steam turbines and generators, as well as the use of steam for steamming (sterilizing) fresh fruit bunches (FFB) are the main things in palm oil mill operations. This is because the need for electrical energy to power various mechanical equipment in the mill comes entirely from this electricity production. Electricity and steam for industrial processing are grouped under the utilities that support that industry. Meanwhile, in the sterilization process or the boiling of FFB, steam besides stopping the development of FFA (free fatty acid) and facilitating the threshing will also facilitate the CPO extraction process and processing the kernel (palm kernel). To produce steam and electricity, of course, energy is needed, namely heat. Steam is produced by the boiler in the form of superheated steam to drive steam turbines and generators to produce electricity and then steam from electricity production or low pressure steam is used for steamming (sterilization) of FFB.

The water after being treated so that it becomes BFW (boiler feed water) is then used for the production of steam and electricity. Heat energy to produce steam can be reduced in such a way with the use of a pyrolysis process (which means that it is not ordinary combustion), so that the heat requirement for the boiler furnace is getting smaller. The pyrolysis condenser will produce hot water so that it becomes preheating for the boiler. In pyrolysis a condenser is used to separate bioil and syngas (uncondensable gas). Preheating from the condensation process of the pyrolysis unit will then go to stage 2 preheating in the economizer of the boiler unit. Thus the temperature of the water entering the upper drum on the boiler is high enough, and the heat requirement to become superheated steam will be reduced. The palm oil mill uses a water tube type boiler as is commonly used in large industries and not a fire tube which is in the form of a shell and tube type heat exchanger with the tube submerged in water so that it does not overheat. In a water tube type boiler, it consists of an upper and lower drum (mud drum) which is connected to a pipe. The lower drum and water tube are fully filled with water, while the upper drum is only partially filled. With this arrangement, steam will pass through the mechanical separator on the upper drum, flow to the superheater and exit the boiler. Efficiency is the key word in production, including the use of energy in the production process of CPO or palm oil mills. The rule of thumb is an increase of 10 C in BFW is equivalent to increasing 1% boiler efficiency.

Typical of water tube boiler

Excess energy from the pyrolysis process should be used for fuel or energy sources in the boiler furnace. The use of excess energy from pyrolysis will also produce environmentally friendly flue gas emissions because the combustion of liquid and gaseous fuels will be cleaner than solid fuels. In this way, the palm kernel shell, which has been used for boiler fuel, can no longer be used. All these palm kernel shells or PKS can be sold directly and even exported to Japan and Korea. Of course, be a separate source of additional income. Palm kernel shells or PKS are competitors for wood pellets in the global market because they have many similar properties, but because palm kernel shells come from waste or palm oil mill sideproducts, the price can be cheaper, more information can be read here. The use of slow pyrolysis for biochar production is the best option compared to similar technologies such as fast pyrolysis and gasification, more details can be read here. Palm oil mills or companies will get a lot of benefits from biochar production, for more details can be read here.

Sunday, March 14, 2021

Benefits of Palm Oil Company When Produce Biochar

There are at least four things that become motivation for biochar production, namely as in the chart above. There are a number of slices that make the impact of biochar application multi-benefits, which is very much in line with today's world problems, namely climate change and global warming. Biochar has also been accepted as an instrument to reduce the concentration of CO2 in the atmosphere which causes the two big problems above, namely in 2018 biochar was included in the Intergovermental Panel on Climate Change (IPCC) as one of the negative emissions technologies (NETs). Biochar application is a carbon negative scenario because biochar can absorb CO2 from the atmosphere. This is slightly different from the use of biomass fuels such as wood pellets, wood briquette and palm kernel shell (PKS) in industrial boilers or power plants, which are carbon neutral scenarios. Indeed, basically there are 3 big scenarios to reduce the concentration of CO2 in the atmosphere, namely increasing the efficiency of equipment that uses fossil fuels, using carbon neutral fuels and carbon negative scenarios such as biochar.


Palm oil trees are known to require a lot of water and fertilizer to maintain the life sustainability and productivity of their fruit, so practical efforts in the form of increasing fertilizer nutrient efficiency and increasing fruit productivity are important. Besides that, palm oil mills produce a lot of biomass waste, especially empty fruit bunches (EFB ) and mesocarp fiber, which are very potential for biochar raw materials. The biochar is then applied in palm oil plantations which can be used with chemical fertilizers or with compost / organic fertilizers.


Pyrolysis and gasification technologies are commonly used for the production of the biochar. Apart from producing biochar by pyrolysis or gasification, energy is also produced which can be used for the business development of the palm oil industry or for electricity production. Production of PKO (Palm kernel oil) from kernel processing at KCP (kernel crushing plant) or production of torrefied PKS from PKS processing with torrefaction can be done by utilizing excess energy from the production of biochar. Most of the palm oil mills or CPO mills do not have kernel processing or KCP to produce PKO. And by making torrefied PKS, the caloric value of PKS will increase, it is easy to downsizing (increased grindability), for example in the use of cofiring and does not absorb water (hydrophobic property). In general, palm oil mills will have many advantages, both economically / financially and environmentally, with this biochar production.

Apart from being used for business development like the diagram above, excess energy from pyrolysis or gasification can also be used as boiler fuel in the palm oil mill. In this way the energy to heat the boiler, which is usually with palm kernel shell and mesocarp fiber, can be replaced by energy from pyrolysis or gasification. After that, all of the palm kernel shells / PKS can be sold or exported, thus providing additional profits for the palm oil company. The need for biomass fuel, especially palm kernel shell / PKS, is predicted to increase, both in the domestic market and in the export market. Japan is currently the largest consumer or user of palm kernel shells and it is predicted that the demand will also increase. Japan will also impose stricter standards on imports of palm kernel shells to ensure environmental sustainability by applying the GGL (Green Gold Label) certification which will be effective starting April 2023. This is like the wood pellets with FSC certification. If anyone is interested in an economic analysis of the use of biochar in palm oil business, please contact us.

Wednesday, March 3, 2021

Biochar to Increase Biogas Production

Charcoal (biochar) is the raw material for the production of activated carbon. The production of activated charcoal itself goes through two main processes, namely carbonization (pyrolysis) and activation. The surface area of charcoal (biochar) is also smaller than that of activated carbon, but larger than the raw biomass. The carbonization process increases the surface area of the raw biomass. The ratio of surface area between raw biomass, charcoal and activated charcoal is approximately 25 m2 / gram, 200 m2 / gram, 2000 m2 / gram. The larger the surface area of the biomass material that is inserted into the biogas reactor, the greater the penetration of bacteria into the substrate so that the fermentation process that occurs is more perfect so that biogas production will increase. Biochar itself does not participate in fermentation because the main component is stable carbon, while hemicellulose, cellulose and lignin have been decomposed during the carbonization process.

Another example is the addition of biomass briquettes to the biogas reactor, briquetting processs with high pressure and heat also open pores or expand the surface of the biomass, so that biogas production also increases, for more details, read here. The addition of biomass briquettes to the biogas reactor will also increase the C / N ratio, even biochar and activated charcoal have high carbon (C) content.

Charcoal (biochar) has been widely used in the agricultural world to repair damaged soil / soil amendment and thus increase fertility. Good soil fertility will also increase agricultural production. The biochar becomes a home for soil microbes, so that organic materials or compost will break down more completely and be absorbed by plants more as plant nutrients. The charcoal (biochar) pores are the home for these microbes. The more pores, the more microbes will inhabit the biochar as their “house”. The same principle applies to the biogas unit. Another bonus of using biochar is that it absorbs CO2 from the atmosphere, thereby contributing to lowering the greenhouse gases that cause climate change and global warming.

Research in Germany shows that adding 5% biochar to a biogas reactor increases methane production by 5% - based on the dry matter of biochar to the substrate. But when the amount of biochar became 10%, it turned out that no more methane was added. This shows that the optimum condition for adding biochar is the amount of 5%. The microbes in the biochar increase the volume of microbes in the reactor so that the production of biogas or especially methane also increases up to 5%. Biochar itself is not decomposed in the fermentation process. 

Meanwhile, the addition of biomass briquettes per 1 tonne of briquettes will increase biogas production by 400 Nm3. This is because in the biomass briquettes, both cellulose, hemicellulose and lignin have not been decomposed, thus adding to the substrate in the biogas reactor. Whereas in biochar, both cellulose, hemicellulose and lignin have been decomposed during the thermal carbonization process, so there is practically no additional substrate, but only microbial addition occurs in the biochar pores.

The important thing about the addition of biochar is that the compost or digestate produced is of better quality with the addition of the biochar. Biochar will make the compost which is produced as a slow release organic fertilizer. This further encourages biochar production, especially for palm oil companies that care about environmental issues and even strive for zero waste conditions.

Palm oil mills have the potential to apply biogas and biochar units. Solid wastes such as empty bunches and mesocarp fiber can be used for biochar production. Palm oil mills can even replace the furnace in the boiler with a gasifier or pyrolyser. This becomes more profitable because in addition to heat energy being used for production of steam which is used for power generation and sterilization of fresh fruit, biochar will also be produced. The biochar produced is then used to increase biogas production and improve the quality of the compost, as well as a fertilizer mixture in palm oil plantations. And even the potential use of biochar to save fertilizer on large palm oil plantations, for more details can be read here.

Monday, February 15, 2021

Estimated Increase in POME Biogas Production in Indonesia and Malaysia with the Addition of Biomass Briquettes

 

The important thing that needs to be done to implement a research in a commercial unit is the technical and economic side. A research product that has been tested technically needs to be evaluated on the economic side. This is because in commercial units, the economic aspect is the main consideration for the implementation of a certain technology. A technology implemented with the intention of improving the performance of these commercial units but not providing economic benefits generally will not attract many. Likewise, vice versa. How much economic benefit can be obtained from implementing this technology? Is it worth the effort? These two questions will be considered next.

In the biogas unit (mostly for electricity production) the above rules also apply. And especially the biogas unit in Indonesia and Malaysia as the largest CPO (crude palm oil) producer in the world, the POME biogas unit or palm oil mill liquid waste has been built as a means of overcoming the problem of liquid waste and also energy production, especially electricity. Tens or even hundreds of POME biogas units have been built in Indonesia and Malaysia, but that number is not yet comparable to the number of palm oil mills in Indonesia and Malaysia which has reached thousands. And more specifically, the number of POME biogas units in Indonesia is less or a smaller percentage compared to palm oil mills compared to Malaysia. Why did this happen? For more details, please read here.

And because the commercial end product of the commercial biogas unit is electricity, the price of electricity will greatly affect the operation of the biogas unit. Research conducted at Aarhus University in Denmark shows that biomass briquettes can significantly increase biogas production, that is, every 1 tonne of straw briquettes added has increased biogas production by an average of 400 cubic meters. With a biogas caloric value of around 4500 kcal / m3, each tonne of addition of straw briquettes will increase calories by 1,800,000 kcal in the form of biogas. for more details, please read here. In the case of POME biogas, if empty fruit bunches (EFB) are used as raw material for briquettes, it could be an increase in the biogas product produced. This is because the EFB have undergone a sterilization process (steamming) so that the biomass pores are more open so that the surface area is larger. The briquetting of the EFB will also further expand the surface of the biomass so that the anaerobic fermentation process is more perfect and the biogas product increases.

Assuming the electricity price per kwh in Malaysia from biogas is 0.49 RM (IDR 1,715) and IDR 1000 in Indonesia, with the increase in biogas produced above, Malaysia will be more attractive and profitable. However, this increase in biogas production has also yielded attractive advantages when applied, both in Indonesia and Malaysia. The estimate assuming a biogas reactor capacity of 150,000 tonnes and with the addition of 15,000 tonnes of biomass briquettes (maximum 10% of the reactor volume) has resulted in profits of nearly 27 billion rupiah/Rp (application in Indonesia) and 14 million Malaysian ringgit/RM (application in Malaysia). Under these conditions, it is actually very interesting to implement this research on POME biogas power plants in Indonesia and Malaysia. Apart from reducing solid waste from the palm oil industry, increasing biogas production which is proportional to electricity production will provide attractive benefits for the palm oil industry.

Friday, October 9, 2020

Production of Briquettes from EFB and MF of Palm Oil for Industrial Boiler Fuels

The need for biomass fuel is increasing all the time, palm kernel shells (PKS) are increasingly expensive and scarce, even though this palm kernel shell (PKS) is the main competitor for wood pellets. When the supply of PKS is limited due to high demand, the price is high, even closer to wood pellets. When this condition is achieved, wood pellets become more desirable than PKS because the quality of wood pellets is better than PKS. In addition to a more uniform shape and size, wood pellets are also drier with a moisture content of around 10%.


In this condition, actually it also opens up opportunities for briquette production. Briquettes and pellets actually use the same type of technology, namely biomass compaction or biomass densification. But briquette production is easier and cheaper than pellets. The level of flexibility of the raw material as a briquette material is also higher than that of pellets. Even some materials that are difficult to make pellets are easy to do with briquette. The size and shape of the briquettes are also more diverse as is the production technology. Briquettes for industrial boiler fuel are briquettes that can be an alternative between PKS and wood pellets.

Besides producing PKS waste, palm oil mills also produce solid waste in the form of empty fruit bunches (EFB) and mesocarp fibre (MF). A number of palm oil mills that use high efficiency boilers will produce a lot of MF. These wastes in the form of EFB and MF can be used as raw material for the production of briquettes. Industrial briquettes with puck shapes that are produced with mechanical press are not only easy to produce but also have a large capacity. The location of the briquette users, which is not too far from the palm oil mill, makes transportation costs cheap, and can compete with PKS and wood pellets.

 Industrial areas and also surrounded by a lot of palm oil mills and plantations such as in Medan, North Sumatra, Indonesia are very potential for the production of industrial briquettes. The briquettes produced are expected to have quality between the PKS and wood pellets as well as the price. The production of industrial briquettes from MF is easier than from EFB. Besides being wet, EFB also needs more effort to reach desired particle size so that it is suitable for the briquetting. Utilization of these wastes in addition to reducing environmental impact will also provide economic benefits.

Replanting Palm Oil Plantations and Utilizing Old Palm Oil Trunks Waste (Presentation Version)

Aging plants are one factor in declining palm oil productivity. Palm oil trees begin to decline in productivity after 20 years and need to b...